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ABSTRACT
We present a new algorithm for computing zigzag persistent
homology, an algebraic structure which encodes changes to
homology groups of a simplicial complex over a sequence
of simplex additions and deletions. Provided that there is
an algorithm that multiplies two n × n matrices in M(n)
time, our algorithm runs in O(M(n) + n2 log2 n) time for a
sequence of n additions and deletions. In particular, the
running time is O(n2.376), by result of Coppersmith and
Winograd. The fastest previously known algorithm for this
problem takes O(n3) time in the worst case.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2.1 [Dis-
crete Mathematics]: Combinatorics

General Terms
Algorithms, Theory

Keywords
Zigzag persistent homology, matrix multiplication.

1. INTRODUCTION

Motivation. Since its introduction a decade ago, persistent
homology [1] has become an important tool in such wide-
ranging domains as computational biology, geometric pro-
cessing, machine learning, scientific visualization, and sensor
networks. Its success rests on two pillars: a solid theoretical
foundation [2], including the celebrated stability result [3],
and the availability of fast algorithms [4].

A more recent development is zigzag persistence [5], which
is a generalization of ordinary persistence built on algebraic
insights. Together with an efficient algorithm in the homo-
logical setting, zigzag persistence has already resolved open
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questions in the theoretical study of persistence [6]. In addi-
tion to the algebraic generality, it brings an appealing prop-
erty for algorithm design: one is not constrained to study
growing families of spaces as in ordinary persistence, but in-
stead is free to choose whether to grow or shrink the space in
question on demand. This flexibility has led to a technique
for computing ordinary persistent homology of a real-valued
function using space that depends only on the size of the
largest levelset, rather than the entire domain [6].

Despite the growing interest in persistence, the complex-
ity of its computation is not well understood. The best cur-
rently known algorithms for ordinary and zigzag persistence
run in time O(M(n)) and O(n3), respectively, in the worst
case, where M(n) is the time to multiply two n×n matrices.
In this paper, we present an algorithm that computes zigzag
persistent homology (and therefore also ordinary persistent
homology) over a finite field in time O(M(n)+n2 log2 n). It
is not known if any of these algorithms are optimal, and we
leave this question open.

We also do not consider the problem of computing ho-
mology over infinite fields. In this case it cannot be as-
sumed that arithmetic operations take constant time, but it
is known that standard homology can still be computed in
O(M(n)) time [7].

Related Work. The computation of homology through
Gaussian elimination has been known for some time [8, 9].
This algorithm has the worst case running time of O(n3).
Persistent (and standard) homology is essentially Gaussian
elimination with known column order and row pivoting.
Therefore, it can be computed in time O(M(n)) (see [10]
for details) over finite fields, using the algorithm for PLU
factorization of Bunch and Hopcroft [11], with minor modi-
fications. In the case of zigzag persistent homology, neither
row nor column order is known in advance, i.e. both row
and column pivoting is required. Some elimination steps are
specified by column, others by row, but never both. Further-
more, the two kinds of elimination steps can be arbitrarily
interleaved. Due to these complications, it is not clear how
to apply [11] and other similar ideas [12, 13] to this problem.

The first sub-cubic algorithm to appear incrementally com-
putes the Betti numbers of subcomplexes of triangulations of
the three sphere S3 [14]. The running time is nα(n), where
n is the number of simplices and α(·) is the inverse Acker-
mann function. An approach to computing Betti numbers
using combinatorial Laplacians appears in [15]. It uses the
power method on the Laplacian matrix, hence operating via
matrix-vector multiplication. However, the number of mul-
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tiplications depends on the eigenvalues of the matrix and
hence is not easily bounded.

The introduction of persistent homology [1, 2], zigzag per-
sistence [5, 6], and other variants [16, 17] came with algo-
rithms based on the sequential Gaussian elimination and so
had a running time of O(n3). In [18], an example complex is
given where the sequential persistence algorithm takes cubic
time. However, in practice, experimental results show close
to linear behavior, most often attributed to the sparsity of
the involved matrices.

In the literature, most work to speed up homology com-
putation has had a different flavor than our approach, with
efforts being made to reduce the size of the input complex
using combinatorial operations which preserve the homol-
ogy [19], most often simplicial collapses. In certain cases,
notably 2-manifolds, it is possible to create an optimal or-
der of collapses to obtain the homology [20]. In the end of
this procedure we end up only with critical cells, allowing
us to simply read off the homology. However, it was also
shown that in the general case, there may not exist a way
to collapse the complex to the minimal number of cells [21].
Furthermore, it was shown to be NP-hard to find an or-
der which will result in the minimum number of cells [22].
More recently, a method [23] was given to reduce the size of
the complex in the special case of clique complexes. Such
complexes are completely determined by their graphs, and
the work tries to extract a minimal representation based
on maximal cliques. As with the collapsing techniques, it
does not come with any guarantees on the size of the output
complex.

In this work we use fast matrix multiplication as a black-
box, but we briefly recount the work which began with the
celebrated result of Strassen [24], showing that the matrix
inversion can be done with an exponent of ω ≈ 2.8 rather
than 3. This has been followed by numerous improvements,
with the currently best known algorithm of Coppersmith–
Winograd [25]. The current best bound for the exponent is
ω = 2.376. Finally, we note that this is still an active area
of research, where [26] proves that if a group with certain
properties exists, so must a quadratic time algorithm for
matrix multiplication.

Outline. We review the necessary background in Section
2. We recast the zigzag persistent homology algorithm of [6]
in terms of matrix multiplications in Section 3. By batching
some of the operations together in Section 4, we obtain the
claimed running time.

2. BACKGROUND
In this section, we recount the necessary mathematical

and algorithmic background. Since the emphasis of this pa-
per is algorithmic, we begin with a simplicial complex X
rather than the usual topological space. Furthermore, ev-
erything will be done with simplicial homology over a field
F. While mathematically it is often more convenient to work
in singular homology, in practice, we always compute in a
combinatorial setting.

We now give a brief overview of homology and zigzag per-
sistence. We refer the reader to Munkres [8] or Hatcher [27]
for background on homology, Edelsbrunner and Harer [4] for
persistence, and Carlsson and de Silva [5] for zigzag persis-
tence. Our primary object is a simplicial complex, which is
a set of simplices such that all faces of a simplex are in the

complex and the intersection of two simplices is a (possibly
empty) face of both.

We define the chain group Cp as an Abelian group on the
set of oriented p-simplices in the simplicial complex. A p-
chain is a linear combination of simplices with coefficients
in a group. We restrict ourselves to the case where the co-
efficients lie in a field, therefore each Cp is a vector space.
We also define the boundary operator ∂p : Cp → Cp−1. In
a simplicial complex, the boundary operator is defined on
a simplex σ as ∂pσ =

∑
i(−1)i[v0, v1, . . . , v̂i, . . . , vp], where

v̂i is deleted from the sequence. Since the operator is lin-
ear, the boundary of a chain is the linear combination of
the boundaries of the simplices. The boundary operator
connects the chain groups into the chain complex : . . . →
Cp+1

∂p+1−−−→ Cp
∂p−→ Cp−1 → . . . The boundary operator is

a map between vector spaces and is most naturally repre-
sented as a matrix where the rows represent (p−1)-simplices
and the columns represent p-simplices.

To define homology, we require two subgroups: the cycle
group Z and the boundary group B. The cycle group Zp is
the kernel of the ∂p, which is the null space of the boundary
matrix. The boundary group Bp is the image of ∂p+1. The
homology is the quotient group of the two subspaces: Hp =
Zp/Bp. By the property that ∂p∂p+1 = 0, it is not difficult to
see that Bp ⊆ Zp ⊆ Cp, meaning the above quotient is well
defined. Since these are vector spaces, standard Gaussian
elimination can be used to find a basis for each space.

Persistent homology and its recently-introduced general-
ization, zigzag persistence, are two powerful extensions of
the classical homology theory. Instead of working with a
fixed simplicial complex, both study a parameterized family
of complexes and examine the evolution of homology classes
in the induced sequences of homology groups. The study
is motivated by data that simultaneously contains features
at multiple scales — a common behavior in practice — and,
therefore, does not justify a single choice of the scale param-
eter. In contrast, by examining a data set across all scales,
we extract information about meaningful parameter values
as well as detect the prominent features in the input.

The starting point of zigzag persistent homology is a se-
quence of spaces connected with maps

X1 ↔ X2 ↔ . . .↔ Xn. (1)

The above notation means that the map between spaces
can point in either direction. For each space we can form
a chain complex; the maps between topological spaces in-
duce maps between the chain complexes, C(X1)↔ C(X2)↔
. . . ↔ C(Xn). Finally, by passing to homology, we obtain a
sequence of vector spaces connected by homomorphisms,

H(X1)↔ H(X2)↔ . . .↔ H(Xn). (2)

This sequence is a zigzag module, denoted by V. As shown
in [5], V has a unique decomposition into a direct sum of
interval modules, V =

⊕
I[b,d]. Each interval module I[b,d]

represents a homology class which exists in all the spaces
from H(Xb) to H(Xd) inclusive. Therefore, we say this class
persists from b to d. Note that persistent homology is a
special case of zigzag persistence where all the maps point
one way.

To compute this decomposition, we require compatible
bases in all of the individual homology groups and track how
they change as we apply the maps. Fortunately, a single
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filtration encodes all the required information (see [5] for
details).

Definition. The right filtration of a space H(Xi) is the
collection of its subspaces taking the form

Ri = (R0, R1, R2, . . . , Ri),

satisfying inclusion relations Rk ⊆ Rl for k ≤ l. The filtra-
tion is then defined inductively. R0 = (0). If the map points

forward: H(Xi)
f−→ H(Xi+1), then the filtration is updated

with the images of the map,

Ri+1 = (f(R0), f(R1), . . . , f(Ri),H(Xi+1)).

If the map points in the other direction: H(Xi)
g←− H(Xi+1),

then the preimages are added,

Ri+1 = (0, g−1(R0), g−1(R1), . . . , g−1(Ri)).

By keeping track of the changes in the right filtration as
we process the zigzag in (1), we obtain the interval decompo-
sition. In the algorithmic setting, without loss of generality,
we can assume that in the sequence of simplicial complexes
(1) consecutive complexes differ by a single simplex, i.e. ei-
ther Xi+1 = Xi ∪ σi, or Xi = Xi+1 ∪ σi.

3. SEQUENTIAL ALGORITHM
In this section we express the algorithm of [6] in terms of

matrix update operations.

Representation. We start with a sequence of simplicial
complexes (1), where consecutive spaces differ by a single
simplex. Enumerating all the simplices σ1, . . . , σk that ap-
pear in the sequence, we ignore multiplicities: if the same
simplex enters, leaves, and then re-enters, we treat it as two
simplices in the enumeration. We associate to each simplex
σi its interval I[bi,di] in the chain complex zigzag, i.e. σi ∈ Xj

iff j ∈ [bi, di].
As in [6], we maintain the right filtration of the zigzag (2),

and represent it after j − 1 steps via the matrices Zj , Bj as
well as the matrix Cj , which maintains the bounding chains.
Denoting the boundary matrix of the simplicial complex
with D, we have 0 = DZj , ZjBj = DCj . Furthermore,
the right filtration of the group H(Xj) = (Rj

0, R
j
1, . . .) is rep-

resented via

Rj
k = span

(
{z + B | z ∈ Zj

k and B = span(ZjBj)}
)
,

where Zj
k denotes the subset of the cycle group spanned by

the first k columns of the matrix Zj . We also implicitly
maintain the birth vector associated to the right filtration,
which allows us to output the persistence intervals; however,
this detail is irrelevant to our argument, and we ignore it
from now on.

In addition to the matrices D,Zj , Cj , Bj of [6], we in-
troduce matrices Ej , F j . The matrices Ej and F j keep
track of the“past”and“future”simplices, respectively. Their
columns correspond to the simplices that have been removed
in the case of Ej , or not yet added in the case of F j .
Their boundaries are expressed using the auxiliary matri-
ces Gj , Hj ,Kj , Lj , Rj , Sj , as defined by Equation (3) — for
instance, Zj

p−1H
j
p is the contribution of the existing cycles

to the boundaries of the “future” simplices, fully expressed
as,

DpFp = Zp−1Hp + Cp−1Kp + Fp−1Lp.

Similarly, for the boundaries of the “past” simplices,

DpEp = Ep−1Gp + Zp−1Rp + Cp−1Sp.

We say that the matrix Hj is independent of the matrix Bj

if any non-zero row in matrix Bj is zero in matrix Hj .

Sequential Invariant. After step j − 1 of the zigzag, the
following conditions must hold:

1.

Dp

[
Ej

p 0 0 0

0 Zj
p Cj

p F j
p

]
=

[
Ej

p−1 0 0 0

0 Zj
p−1 Cj

p−1 F j
p−1

]
Gj

p 0 0 0

Rj
p 0 Bj

p Hj
p

Sj
p 0 0 Kj

p

0 0 0 Lj
p


(3)

For convenience, we abbreviate the matrices in (3) as
DΦj

p = Φj
p−1Γj

p.

2. Matrix Bj
p has exactly one non-zero element per col-

umn, and at most one per row. Matrix Hj
p is indepen-

dent of Bj
p.

3. The columns of matrix F j
p are linearly independent.

Matrix Zj
p forms a basis for the p-cycles Zp(Xj). The

boundary DCj
p forms a basis for the (p−1)-boundaries

Bp(Xj).

4. Rj
k = span

(
{z + B | z ∈ Zj

k and B = span(ZjBj)}
)
.

Additionally, we choose a particular ordering for the rows
and columns of our matrices.

Ordering. The rows of the matrices Zj , Cj , Ej , and F j

correspond to the individual simplices in the complex, and
we order them by the removal time of those simplices. Con-
sequently, the rows and the columns of the boundary matrix
D are also ordered by the removal time. The columns of the
matrix F j represent future simplices, and we order them by
the addition time. The columns of the matrix Ej represent
past (removed) cycles and chains, and we order them by the
removal time.

From the invariant and ordering requirements it follows
that, initially, L0

p is the boundary matrix with rows and
columns ordered by addition, while F 0

p is a permutation ma-
trix, its columns and rows are indexed by simplices ordered
by addition and removal, respectively. The above ordering is
insignificant in the rest of this section, however, it becomes
critical in Section 4 when we describe how to divide and
conquer the necessary computation.

Four cases. In the remainder of the section, we express the
update performed to the matrices after each step as matrix
multiplication.

[
Ej+1

p 0 0 0

0 Zj+1
p Cj+1

p F j+1
p

]
=

[
Ej

p 0 0 0

0 Zj
p Cj

p F j
p

]
M j

p
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
Gj+1

p 0 0 0

Rj+1
p 0 Bj+1

p Hj+1
p

Sj+1
p 0 0 Kj+1

p

0 0 0 Lj+1
p

 =

(M j
p−1)−1


Gj

p 0 0 0

Rj
p 0 Bj

p Hj
p

Sj
p 0 0 Kj

p

0 0 0 Lj
p

M j
p

Step j of the zigzag can be one of the two possibilities:
an addition of a simplex, Xj+1 = Xj ∪ σi, or a removal
of a simplex, Xj = Xj+1 ∪ σi. Each of the two cases can
have one of two outcomes: a birth or a death of a homology
class. Before we describe the four possibilities, we establish
an equivalence between the matrices.

Lemma 1 (Forward Step Equivalence Lemma). If the j-th
step of the zigzag is the addition of the simplex σi, then
Lj

p[i] = 0, Kj
p[i] = 0, and DF j

p [i] = Zj
p−1H

j
p [i]; in particular,

DF j
p [i] = 0⇔ Hj

p [i] = 0.

Proof. By the first condition of the sequential invariant,
DFp = Zp−1Hp + Cp−1Kp + Fp−1Lp. The last term,
F j
p−1L

j
p[i], is zero when we are adding simplex σi, since it

represents the boundary of σi among the “future” simplices.
The assumption that every step of our zigzag is a homology
group of a simplicial complex implies that the boundary of
a simplex cannot occur in the future. From the invariant,
the columns of the matrix F j

p−1 are linearly independent,

therefore, Lj
p[i] = 0. Taking the boundary of the remaining

equation (and recalling that the boundary matrix squared
is 0), we get 0 = DDF j

p [i] = DZj
p−1H

j
p [i] + DCj

p−1K
j
p[i] =

DCj
p−1K

j
p[i], where the last equality follows since the bound-

ary of every cycle in the matrix Zj
p−1 is zero, by definition.

Therefore, Kj
p[i] = 0 since DCj

p−1 is a basis by the third
condition of the invariant.

We get DF j
p [i] = Zj

p−1H
j
p [i]. Since the columns of matrix

Zj
p are linearly independent, DF j

p−1[i] = 0 iff Hj
p [i] = 0.

Birth after addition. This case is characterized by
DF j [i] = 0, or, by Lemma 1 equivalently, Hj [i] = 0. In
particular, F j [i] is the newly born cycle (indeed, it contains
the new simplex σi). We append it to the cycle matrix Zj .
The update matrix for this operation is

M j
p =


I 0 0 0 0
0 I 0 0 0
0 0 0 I 0
0 0 1 0 0
0 0 0 0 I

 . (4)

Death after addition. This case is characterized by
DF j

p [i] 6= 0, or, equivalently by Lemma 1, Hj
p [i] 6= 0. More-

over, DF j
p [i] = Zj

p−1H
j
p [i] represents the cycle that gets

killed by the addition of σi. Indeed, since Hj
p [i] is inde-

pendent of Bj
p and non-zero, it means that Zj

p−1H
j
p [i] is not

a boundary before step j. On the other hand, by definition,
DF j

p [i] is a boundary after the addition of simplex σi. Let

a be the last non-zero entry in the column Hj
p [i]. We split

the column using this entry into Hj
p [i] = [hT a 0T ]T , where

h is a vector. Suppose a is in the row k. We split the row as
follows Hj

p [k, ·] = [a gT ], where g is a vector. F j
p [i] becomes

a bounding chain, and therefore moves to Cj
p. Its boundary

replaces the column k of Zj
p−1 (which is a change of basis

in Zj
p−1). We insert a column with a single 1 in row k into

the matrix Bj
p to reflect the death of the cycle Zj

p−1[k]. We

use this column to zero out row k of Hj
p , thus keeping Hj

p

independent of Bj
p. The necessary update operations are

M j
p−1 =


I 0 0 0 0 0
0 I h/a 0 0 0
0 0 1/a 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 ,

M j
p =


I 0 0 0 0
0 I 0 0 0
0 0 I 0 0

0 0 0 1 −gT

0 0 0 0 I

 .
(5)

Remark 1. A subtle, but important consequence of the ma-
trix Hj being independent of the matrix Bj is that the col-
umn F j [i] arrives “ready”: we do not need to reduce it at the
beginning of an individual step. This fact is crucial for the
speed-up explained in the next section.

Removing a simplex σi corresponds to nullifying the rows i
in the matrices Zj , Cj , and F j .

Birth after removal. This case is characterized by
Zj

p[i, ·] = 0, i.e., no cycle contains simplex σi. Let a be

the rightmost non-zero entry in row i of matrix Cj
p, and

suppose it lies in column k, we have Cj
p[i, ·] = [cT a 0T ];

specifically, Cj
p[i, 1..k − 1] = cT , Cj

p[i, k] = a. Let Bj
c be the

part of the matrix Bj
p corresponding to the columns cT in

Equation (3), i.e. Bj
c = Bj

p[·, 1..k]. Let fT be the i-th row of

the matrix F j
p .

1: The boundary DCj
p[k] = Zj

p−1B
j
p[k] is the newly born

cycle. We prepend it to the matrix Zj . In the operations
below, suppose the 1 in the column Bj

p[k] is in row l.

2: We subtract column Cj
p[k]/a from the other columns in

Cj
p and all columns of F j

p .

3: To keep track of the “past”, we move column k from Cj
p

to Ej
p (with the corresponding update in Γp).

4: The term −(cT /a)(Bj
c)T below undoes the effect of Step

2 on matrix Bj
p.

The operations are

M j
p−1 =


I 0 0 0 0 0
0 0 I 0 0 0
0 1 −(cT /a)(Bj

c)T 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


(row l)

M j
p =


I 0 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 1 0 −cT /a 0 −fT /a
0 0 0 0 I 0
0 0 0 0 0 I

 .
(6)
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Death after removal. This case is characterized by
Zj

p[i, ·] 6= 0, i.e. there is a cycle that contains σi. Let a be

the leftmost non-zero entry in this row, we have Zj
p[i, ·] =

[0T a zT ]. Furthermore, let Cj
p[i, ·] = cT be the i-th row of

matrix Cj
p and let F j

p [i, ·] = fT be the i-th row of matrix F j
p .

We zero out these rows by adding multiples of the column
containing element a to the other columns, while moving
that column into the “past” matrix Ej .

Operations

M j
p =


I 0 0 0 0 0
0 0 I 0 0 0
0 1 0 −zT /a −cT /a −fT /a
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 . (7)

In both removal cases, the purpose of zeroing out fT is
to satisfy statement 1 of the Invariant, specifically, to make
sure that the row of the freshly removed simplex σi is zero
in the future matrix F j

p .

Remark 2. In the addition cases, we only inspect the col-
umn of the matrix Hj

p corresponding to the j-th step of the
zigzag, both to make a decision about birth or death, and
to construct the update matrices. Similarly, in the removal
cases we only inspect the rows of the matrices Zj

p or Cj
p cor-

responding to the j-th step of the zigzag.

In the next section, we divide our matrices into smaller
blocks, always ensuring that the necessary parts are avail-
able to the procedure responsible for the j-th step.

Correctness. The above operations are almost the same as
in [6]; in Appendix A, we focus on verifying the new parts
of the invariant.

4. HIERARCHICAL ALGORITHM
In this section we take advantage of the Remarks 1 and 2

above, and construct a divide-and-conquer algorithm for
processing a zigzag of simplicial complexes. We emphasize
that our algorithm is simply an efficient implementation of
the algorithm from Section 3 by changing the order in which
various matrix updates are applied.

For simplicity, we assume that the number of steps in the
zigzag is a power of two. Throughout this section, M(n)
denotes time to multiply two n× n matrices.

Restrictions. The main idea of the hierarchical algorithm
is that the elementary updates M j

p are not applied imme-

diately, but piecewise. Each M j is split into submatrices,
which are applied at different times to corresponding sub-
matrices of Φj and Γj . Recall that rows and columns of
M j , Φj , Γj are associated with the sequence of insertions
and removals (cf. Section 3, Ordering). Not surprisingly,
the submatrices of interest to the hierarchical algorithm are
associated with contiguous subsequences of operations. We
refer to these submatrices as restrictions, and we define them
as follows.

Let i ∈ [a, b + 1] be a step. Restriction of matrix Φi
p

to steps [a, b], denoted by Φ
i;[a,b]
p , is the submatrix of Φi

p

obtained by removing:

• rows corresponding to p-simplices removed outside steps
[a, b],

• columns corresponding to p-simplices added after step
b, and

• columns corresponding to p-cycles/chains removed be-
fore step a.

In other words (as it follows from Ordering), to get Φ
i;[a,b]
p

from Φi
p, we remove a few topmost and bottommost rows,

and a few leftmost and rightmost columns.
We define restrictions of other matrices similarly. Restric-

tion of matrix Γi
p to steps [a, b], denoted by Γ

i;[a,b]
p , is the

submatrix of Γi
p obtained by removing rows corresponding

to (p − 1)-simplices added after step b, rows corresponding
to (p−1)-cycles/chains removed before step a, columns cor-
responding to p-simplices added after step b, and columns
corresponding to p-cycles/chains removed before step a.

Let i ∈ [a, b] be a step. Restriction of update matrix M i
p

to steps [a, b], denoted by M
i;[a,b]
p , is the submatrix obtained

by removing rows and columns corresponding to p-simplices
added after step b, rows and columns corresponding to p-
cycles/chains removed before step a.

Operation tree. We can view the hierarchical algorithm
below as an in-order traversal of a binary tree. The leaves
of the tree correspond to individual steps of the zigzag (sim-
plex additions and removals). Each tree vertex represents
an invocation of H-ZZPH.

σ+
i σ−

i

For the rest of this section we assume, unless noted other-
wise, that v is a generic tree node whose leaf descendants
correspond to steps [a, b]. Also, we will often use a tree node
as a shorthand for its set of leaf descendants. For example,
if i ∈ [a, b], then we can write i ∈ v, Φi;v

p , Γi;v
p , M i;v

p , etc.
The main recursive procedure H-ZZPH appears below.

Lemma 2 formally specifies what H-ZZPH(v) does. In a
nutshell, it solves the problem for a subsequence of steps
given by v, with all matrices restricted to v. More precisely,
given initial matrices Φa

p and Γa
p, it computes final matrices

Φb+1
p and Γb+1

p , and all the intermediate elementary updates

M i
p, i ∈ v, where all the input and output matrices are

restricted to v. Since the root of the tree corresponds to
all zigzag steps, top level of recursion returns unrestricted
matrices, as desired. H-ZZPH is implemented as follows.

H-ZZPH(v)
if v is leaf then

Compute Ma;a
p , Φa+1;a

p , Γa+1;a
p as in Section 3, but re-

stricting to suitable 1× 1, 1× n, or n× 1 submatrices
if v is internal then

H-ZZPH(l)
Left-to-Right
Apply-Left
H-ZZPH(r)
Right-to-Left
Apply-Right
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Unless v is a leaf, H-ZZPH(v) calls itself recursively on
the two children of v. Generically, the left child of v is l, its
right child is r, and the number of leaf descendents of l and
r (i.e., half the number of leaf descendents of v) is k. We
denote by c the last step of l, i.e., c = a+ k − 1. Procedure
Left-to-Right loosens the restriction of the result of the
first recursive call; it computes M i;v

p from {M i;l
p : i ∈ l}.

Procedure Right-to-Left does the symmetric operation
for the second recursive call; it computes M i;v

p from {M i;r
p :

i ∈ r}. Procedure Apply-Left simply applies the result
of Left-to-Right to Φa;v

p and Γa;v
p to compute Φc+1;v

p and
Γc+1;v
p ; this establishes the the precondition for the second

recursive call.

Structure of matrices. Our algorithm exploits the struc-
ture of Φ, Γ, and M matrices in order to multiply them
quickly. To describe this structure, we introduce a notion of
width.

Definition. An n×n matrix has width k, for some k ≤ n,
if it can be written as P + UV T , where U , V are n × k
matrices, and P is an n × n matrix with at most one non-
zero entry in any row or column. The triple (P,U, V ) is
called the width-k representation of the matrix.

In other words, a width-k matrix is a sum of a sparse ma-
trix and a rank-k matrix. The key property is that matrices
can be multiplied in time proportional to their width (cf.
Lemma 5). We assume that matrices are also stored in their
appropriate low-width representation, if they have one.

It is obvious that elementary update matrices M i
p have

width-1 representation P + uvT , where P is a permutation
matrix, so that P−1 = PT (see Section 3). Moreover, due
to the structure of Γi

p, any restriction of Γi
p to k steps has

width O(k). Finally, any restriction of Φi
p to k steps is a

k × n (“skinny”) matrix. We use all these facts for efficient
computation (cf. Lemma 3, 4, 5).

Notice that width-k representation is not unique. Product
of k width-1 matrices is a width-k matrix (cf. Lemma 5).
In this case, two particular width-k representations are of
special interest; we define them by showing how to compute
them. Let {(Pi, ui, vi) : i = 1, . . . , k} be width-1 represen-
tations for k width-1 matrices. The Prefix and Suffix
representation of

∏k
i=1(Pi + uiv

T
i ) are defined by

Prefix(Pi, ui, vi | i = 1, . . . , k)
if k = 1 then

return P1, u1, v1
Q1, X1, Y1 ← Prefix(Pi, ui, vi | i ≤ bk/2c)
Q2, X2, Y2 ← Prefix(Pi, ui, vi | i > bk/2c)
return Q1Q2,

[
X1 (Q1 +X1Y

T
1 )X2

]
,
[
QT

2 Y1 Y2

]
Suffix(Pi, ui, vi | i = 1, . . . , k)
if k = 1 then

return P1, u1, v1
Q1, X1, Y1 ← Suffix(Pi, ui, vi | i ≤ bk/2c)
Q2, X2, Y2 ← Suffix(Pi, ui, vi | i > bk/2c)
return Q1Q2,

[
X1 Q1X2

]
,
[
(Q2 +X2Y

T
2 )TY1 Y2

]
These two forms are significant because from the output of

Prefix (resp. Suffix) we can easily compute a low-width

representation of any prefix
∏l

i=1(Pi + uiv
T
i ) (resp. suffix∏k

i=l(Pi + uiv
T
i )), 1 ≤ l ≤ k, of the product by zeroing out

columns and permuting. This property will be useful in im-
plementing algorithms Left-to-Right and Apply-Left.
In particular, we exploit it in equations (8) and (9) below.

To see that the output of the two algorithms has the
claimed form, consider the following operation. First, zero
out the second half of the second matrix in the output of
Prefix. Then, undo the permutation corresponding to the
second half of the product by right-multiplying the output
expression of Prefix by QT

2 ,

(Q1Q2 + [X1 0][QT
2 Y1 Y2]T )QT

2 = Q1 +X1Y
T
1 .

The result is precisely the first half of the product. Symmet-
rically, in Suffix, zeroing the first half of the second matrix
and left-multiplying with QT

1 yields Q2 +X2Y
T
2 .

Left-to-Right. The goal of this procedure is to extend
the restriction of {M i

p : i ∈ l}, from l to v. Definition of

restrictions of M i
p implies that the only rows/columns in

M i;v
p which are not present in M i;l

p are those corresponding

to p-simplices added in the steps of r. In other words, M i;v
p

is missing fewer bottommost rows and rightmost columns
compared to M i;l

p .

For i ∈ l, let M i;l
p = Pi + uiv

T
i , hence

M i;v
p =

[
Pi 0
0 I

]
+

[
ui

0

] [
vi
wi

]T
where the unknown wi expresses how to apply update i to
the leaves of r. The Prefix form of

∏c
i=aM

i;l
p is

c∏
i=a

M i;l
p =

c∏
i=a

Pi +
[
u′a · · · u′c

] [
v′a · · · v′c

]T
.

The Prefix form of
∏c

i=aM
i;v
p is

c∏
i=a

M i;v
p =

[∏c
i=a Pi 0
0 I

]
+

[
u′a · · · u′c
0 · · · 0

] [
v′a · · · v′c
wa · · · wc

]T
.

Note that using Prefix is crucial for wa, . . . , wc to stay un-
changed. We will need prefixes

∏i
j=aM

i;v
p of this product,

and we can access them by zeroing out and permuting as
claimed above.

i∏
j=a

M j;v
p =

[∏i
j=a Pj 0

0 I

]
+

[
u′a · · · u′i 0 · · · 0
0 · · · 0 0 · · · 0

][
v′a · · · v′c
wa · · · wc

]T [
(
∏c

j=i+1 Pj)
T 0

0 I

]
(8)

The algorithm proceeds in the order of increasing dimension
p. Therefore, we can assume that M i;v

p−1 = Qi + xiy
T
i has

already been computed for all i ∈ l. In the base case p = 0,
we have M i;v

p−1 = I, which is already in the required form.

The Suffix form of (
∏c

i=aM
i;v
p−1)−1 is

(

c∏
i=a

M i;v
p−1)−1 = (

c∏
i=a

Qi)
T +

[
x′a · · · x′c

] [
y′a · · · y′c

]T
.

We will need suffixes (
∏i

j=aM
j;v)−1 of this product, and we
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use the same zero-and-permute strategy to access them.

(

i∏
j=a

M j;v)−1 = (

i∏
j=a

Qj)
T +

(

c∏
j=i+1

Qj)
[
x′a· · ·x′i 0· · ·0

] [
y′a· · ·y′c

]T
.

(9)

To find the unknown wi, we express each one as a linear
function of wj , j < i: we compute column vectors αi, βi
such that wi =

[
wa · · · wc

]
αi + βi, and only the leading

i − a entries of αi can be non-zero. We then find unknown
vectors wa, . . . , wc by solving the linear system. It remains
to explain how to compute αi and βi.

First of all, note that wi = 0 in case 1 (birth after addi-
tion), as can be verified from (4). Let’s examine the three
remaining possibilities. Suppose step i is removal of a p-
simplex (cases 3 and 4). The removed simplex corresponds
to a row of Φi

p. Let si be the indicator vector of that
row. Then, by the description of the sequential algorithm
in Section 3, to get wT

i we need to apply to Φa;v
p updates

a, . . . , i − 1, select the row indicated by si and columns of
r, and negate the resulting submatrix. Formally (after some
calculation which we skip), we get

wT
i = −sTi Φa;v

p

([
0
I

]
+

[
u′a· · ·u′i−1 0· · ·0
0 · · · 0 0· · ·0

] [
wa· · ·wc

]T)
,

which implies

αT
i = −sTi Φa;v

p

[
0
I

]
βT
i = −sTi Φa;v

p

[
u′a · · · u′i−1 0 · · · 0
0 · · · 0 0 · · · 0

]
.

Now suppose that step i is addition of a p-simplex that kills
a cycle (case 2). The killed cycle corresponds to a row in Γi

p.
Let si be the indicator vector of that row. Again, using the
description of the sequential algorithm from Section 3 and
skipping some calculations,

wT
i = −sTi

(
(

i−1∏
j=a

Qj)
T +

(

c∏
j=i

Qj)
[
x′a · · · x′i−1 0 · · · 0

] [
y′a · · · y′c

]T)

× Γa;v
p

([
0
I

]
+

[
u′a · · · u′i−1 0 · · · 0
0 · · · 0 0 · · · 0

] [
wa · · · wc

]T)
Letting

s′i = (

i−1∏
j=a

Qj)si ,

s′′i =
[
x′a · · · x′i−1 0 · · · 0

]T
(

c∏
j=i

Qj)
T si ,

s′′′i = s′i +
[
y′a · · · y′c

]
s′′i ,

we get

αT
i = −(s′′′i )T Γa;v

p

[
0
I

]
,

βT
i = −(s′′′i )T Γa;v

p

[
u′a · · · u′i−1 0 · · · 0
0 · · · 0 0 · · · 0

]
.

Appendix C gives pseudo-code for one possible efficient im-
plementation of the above computations. Note that Left-
to-Right also requires Φa,v

p , Γa,v
p , {Φi;i

p ,Γ
i;i
p : i ∈ l}, in

addition to already mentioned {M i;l
p : i ∈ l}. In the proof

of correctness (Lemma 2) we will show that all this data is
indeed available when Left-to-Right is invoked.

Batched application of updates. Next, we Apply-Left
updates M i;v to matrices Φa;v and Γa;v for all i = a, . . . , c.
The algorithm uses Prefix to compute (

∏c
i=aM

i;v
p−1)−1 and∏c

i=aM
i;v
p as width-k matrices (Suffix works just as well).

Then it multiplies Φa;v
p and Γa;v

p appropriately, resulting in
Φc+1;v

p , Γc+1;v
p .

Apply-Left
for p = 0, 1, . . . , max. dimension do

for i ∈ l do
Pi, ui, vi ← width-1 form of M i;v

p

Qi, xi, yi ← width-1 form of M i;v
p−1

P,U ′, V ′ ← Prefix(Pi, ui, vi | i = a, . . . , c)

Q,X ′, Y ′ ← Prefix(QT
i ,

QT
i xi

yT
i QT

i xi−1
, Qiyi | i = c, . . . , a)

Φc+1;v
p ← Φa;v

p (P + U ′(V ′)T )

Γc+1;v
p ← Γa;v

p (P + U ′(V ′)T )

Γc+1;v
p ← (Q+X ′(Y ′)T )Γc+1;v

p

Right-to-Left. Right-to-Left extends the restriction of
{M i

p : i ∈ r} from r to v. Definition of restrictions of M i
p

implies that the only rows/columns in M i;v
p which are not

present in M i;r
p are those corresponding to p-cycles and p-

chains removed in steps of l. In other words, M i;v
p is miss-

ing fewer topmost rows and leftmost columns compared to
M i;r

p . But updates {M i
p : i ∈ r} have no effect on p-cycles

and p-chains removed in steps of l; this can be verified by
inspecting update matrices in Section 3. Hence, we simply
pad each {M i;r : i ∈ r}, with an identity matrix of suitable
size.

Right-to-Left
for i ∈ r and all p do

M i;v
p ←

[
I 0
0 M i;r

p

]
Apply-Right is implemented like Apply-Left, except
{M i;v

p : i ∈ l} are replaced by {M i;v
p : i ∈ r}, and Φa,v

p , Γa,v
p

are replaced by Φc+1;v
p , Γc+1;v

p .

Correctness. We prove correctness of the hierarchical al-
gorithm by applying the following more general statement
to the root of the operation tree.

Lemma 2. Φa;v, Γa;v are correct when H-ZZPH(v) is in-
voked and thereafter. {M i;v, i ∈ v}, Φb+1;v, Γb+1;v are cor-
rect when H-ZZPH(v) terminates and thereafter.

Proof. We prove the statement by induction on the order of
events (invocations and terminations of H-ZZPH).

The first event is invocation where v is the root. In that
case, Φa;v

p and Γa;v
p are simply initial unrestricted matrices

Φ1
p and Γ1

p, which are correct initially, because they are ini-
tialized in the same way as in the sequential algorithm.

Now consider some other event — an invocation or a ter-
mination at a node u — assuming that the claim is true for
all the preceding events.
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Suppose that the event is an invocation of H-ZZPH(u).
Noting that u is not a root, let v be the parent of u. If
u = l, since the restrictions of the matrices to a child are
a subset of the restrictions to a parent, we are done by the
inductive hypothesis (i.h.) on the invocation of H-ZZPH(v).
Otherwise, by i.h., when H-ZZPH(l) terminates, {M i;l : i ∈
l}, Φc+1;l, Γc+1;l are correct. By i.h. for the invocation on
each leaf i ∈ l, {Φi;i

p ,Γ
i;i
p : i ∈ l} are correct. Hence the

vectors si in Left-to-Right can be correctly read off from
Φi;i

p and Γi;i
p . Since all input data for Left-to-Right is

correct, {M i;v : i ∈ l} are correct when Left-to-Right
terminates. By design of Apply-Left, at its termination,
Φc+1,v, Γc+1;v, and, therefore, Φc+1,r, Γc+1;r are correct,
which completes this part of the proof.

Now suppose that the event is termination of H-ZZPH(v).
If v is a leaf, then at termination, Ma;v, Φa+1;v, Γa+1;v

are correct because they are computed using the same rules
as in the sequential algorithm, and starting from correct
input (Φa;v, Γa;v). Now suppose v is internal. As before,
combining i.h. on termination of H-ZZPH(l), i.h. on the
invocation on the leaf descendents of l, and design of Left-
to-Right and Apply-Left, we prove that when Apply-
Left terminates, {M i;v : i ∈ l}, Φc+1;v, Γc+1;v are correct.
By i.h., when H-ZZPH(r) terminates, {M i;r : i ∈ r}, Φb+1;r,
Γb+1;r are correct. When H-ZZPH(v) terminates, {M i;v :
i ∈ r} are correct by design of Right-to-Left, and Φb+1;v,
Γb+1;v are correct by design of Apply-Right.

Running time. We show that the hierarchical algorithm
runs on an n-step zigzag in time O(M(n) + n2 log2 n). The
key step is showing that H-ZZPH(v), excluding its recursive
calls, can be implemented to run in time proportional to
the number of leaf descendents of v. The missing proofs of
lemmas below appear in Appendix B.

Theorem 1. H-ZZPH(v) runs in O(n
k
M(k) + n

k
k2 log2 k)

time.

From this we easily get the main result of the paper.

Corollary 1. Zigzag persistent homology for a sequence of
n steps can be computed in time O(M(n) + n2 log2 n).

Before proving Theorem 1, we provide tools for efficient
computation that will be invoked repeatedly.

Lemma 3. Let U , V be n×k matrices, k ≤ n, and let W be a
k×k matrix. One can compute UTV and UW in O(n

k
M(k))

time.

Lemma 4. Let B be an n× k matrix. Given a width-k rep-
resentation of A, AB can be computed in O(n

k
M(k)) time.

Lemma 5. If A has width k1 and B has width k2, then
AB has width k1 + k2. Given low-width representations A
and B, low-width representation of AB can be computed in
O( n

k1+k2
M(k1 + k2)) time.

Proof of Theorem 1. First assume that M(n) /∈ O(n2).
Let TPrefix(t) be the worst-case running time of Prefix

on an input consisting of t width-1 terms. Then TPrefix(t) ≤
2TPrefix( t

2
) +O(n

t
M(t)), where the last term is determined

by the time it takes to compute Y T
1 X2 by Lemma 3. Solving

this recursion, we get TPrefix(t) = O(n
t
M(t)). By similar

analysis we can bound the running time of Suffix on t terms
by O(n

t
M(t)).

Apply-Left and Apply-Right run in time 2TPrefix(k) +
O(n

k
M(k)) +O( n

2k
M(2k)) +O( n

3k
M(3k)), where the terms

correspond to two calls to Prefix, computing Φa;v
p (P +

U ′(V ′)T ) by Lemma 4, computing Γa;v
p (P + U ′(V ′)T ) by

Lemma 5, and computing (Q+X ′(Y ′)T )Γc+1;v
p by Lemma 5.

We analyze the running time of Left-to-Right, as im-
plemented in Appendix C. Let kp be the number of non-
trivial updates for dimension p. Clearly,

∑
p kp = O(k). We

fix dimension p, and analyze its iteration of the for loop.
Calls to Prefix and Suffix take O(n

k
M(k)) time. Com-

puting s′i and s′′i , i ∈ l takes O(nk) time, using any obvi-
ous implementation. Computing Y ′

[
s′′a · · · s′′c

]
takes

O(n
k
M(k)) time by Lemma 3. Computing

[
s′′′a · · · s′′′c

]
takes O(nk) time. Since Φa;v

p has size at most k × n, com-
puting Φa;v

p U ′ takes O(n
k
M(k)) by Lemma 3. Since Γa;v

p

has width k, computing Γa;v
p U ′ takes O(n

k
M(k)) time by

Lemma 4. Multiplying the result by
[
s′′′1 · · · s′′′k

]T
takes

O(n
k
M(k)) time, by Lemma 3. Coefficient vectors αT

i , βT
i

are computed in O(k2) time, because they appear as subma-
trices of already computed matrices T1 and T2. The k × k
linear system can be solved in O(M(k)) time using Bunch
and Hopcroft’s algorithm [11]. We conclude that the for
loop for dimension p runs in O(n

k
M(k)) time. It can ac-

tually be implemented to run in O( n
kp
M(kp)), where kp is

the number of updates that affect dimension p. Since this
is superlinear in kp, and

∑
p kp = O(k), we conclude that

Left-to-Right runs in O(n
k
M(k)) time.

Right-to-Left modifies k matrices by changing adding k
nonzero entries to each. Clearly, it can be implemented to
run in optimal O(k2).

We define TH-ZZPH(k) to be the worst-case running time
of H-ZZPH(v) for any tree node v with k leaf descendents.
It is easy to see that T (1) = O(n), because if v is a leaf,
the algorithm manipulates O(1) rows and columns, by in-
specting, moving or copying them to compute Ma;a

p , Φa+1;a
p ,

Γa+1;a
p . Furthermore, from the above analysis it follows that
TH-ZZPH(2k) ≤ 2TH-ZZPH(k) +O(n

k
M(k)). The claim follows

by solving the recurrence relation.
If M(n) ∈ O(n2) the analysis is similar. Solving each

recurrent relation (the one for TPrefix/TSuffix, and the one
for TH-ZZPH) contributes one logarithmic factor.
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APPENDIX
A. CORRECTNESS OF THE SEQUENTIAL

ALGORITHM
Since the operations in Section 3 are almost the same as

in [6], we focus our proof of correctness on verifying the new
parts of the invariant.

1: DΦj
p = Φj

p−1Γj
p. The equality is satisfied in Equa-

tion (3) because we apply the same updates to both sides of
the equation. However, we must still ensure that the spe-
cific forms prescribed to matrices Φj

p and Γj
p remain intact:

namely, that the blocks marked zero in (3) remain zero.
If there is a birth after an addition, the product Φj

pM
j
p

moves the newly born cycle from submatrix F j
p into Zj+1

p ;

its boundary is zero by the case assumption. Γj
pM

j
p moves

the zero column (zero by Lemma 1) into the portion of Γj+1
p

corresponding to the cycle matrix Zj
p. Pre-multiplying Γp+1

by (M j
p)−1 performs the corresponding row update, safely

moving a row from the fourth to the second section of Γp+1.
If there is a death after an addition, M j

p−1 performs a basis

change in Zj
p−1 (with a matching update in Bj

p). It does
not affect the structure of the matrices, only ensures that
the leftmost column of Bj+1

p has a single 1. M j
p does two

things. First it moves the bounding chain from F j
p into

Cj+1
p , and the corresponding boundary from Hj

p to Bj+1
p .

Then it subtracts a multiple of the new column in Bj+1
p from

Hj
p ; these subtractions only introduce zeros. The effect of

(M j
p)−1 on Γj

p+1 is adding rows of Lj
p+1 to Kj

p+1, a benign
update as far as zeros are concerned.

If a simplex is removed, multiplying by matrix M j
p zeroes

out the outgoing row of matrix Cj
p (and also Zj

p in case of a

death), as well as F j
p . As a result, once the row is moved to

the past, all but its first portion (now belonging to matrix
Ej+1

p ) is zero. The effect of the matrix (M j
p−1)−1 (from

Equation (6)) in the product (M j
p−1)−1Γj

p does not cross
the partition boundaries.

2: Bj
p has exactly one non-zero element per column, and at
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most one per row. Hj
p is independent of Bj

p. In the removal

cases, the only change to the matrix Hj
p is that it loses a

row, and so does Bj
p; this loss does not affect the invariant.

It’s important to note that in case of the change of basis
in Zj

p after a death, Bj
p cannot stop satisfying the invariant,

since the columns of Zj
p that have a matching 1 in Bj

p cannot
contain the outgoing simplex (the 1 would indicate that the
cycles were boundaries, but the outgoing simplex has no
cofaces). In case of a birth after removal, M j

p−1 performs a

change of basis in Zj+1
p−1 such that its inverse updates Bj+1

p

to once again satisfy the invariant.
In the case of addition, if birth occurs, matrix Hj

p loses
a zero column, which again requires no update. If there is
a death, Bj

p acquires a single column. Pre-multiplication of

Γj
p by (M j

p−1)−1 ensures that Bj+1
p has a single 1 in that

column, which is in the row of the lowest non-zero entry in
the outgoing column of Hj

p ; therefore, Bj+1
p remains a per-

mutation matrix. We explicitly zero this row out via matrix
M j

p . Therefore, in all cases statement 2 of the Invariant is
maintained.

3, 4: Matrix M j
p perform performs additions from left to

right in F j
p , and possibly removes a column from it (in the

case of an addition of a simplex). Therefore, the columns of
F j+1
p remain linearly independent.
In the case of a removal of a simplex, the main updates

performed to matrices Z and C are the same as in [6], with
the exception of a few additional changes of basis in Z via
left to right operations (which respect the right filtration).
Therefore, the last two parts of the invariant are maintained.

In the case of an addition, the only difference from [6] is
that the first column of the matrix F j

p already has the correct
form, and does not require any additional processing.

In the birth case, this is easy to see: the column F 0
p [i]

corresponding to the simplex σi contains a 1 in the row
corresponding to this simplex. None of the operations ever
remove this element from this column. Therefore, when we
add σi we have a new cycle (recorded as the column F j

p [i]),

which we append to the matrix Zj
p.

In the death case, the boundary of the column F j
p [i] is

in the kernel of the map on the homology. If the lowest el-
ement in the matching column Hj

p [i] is in the row l, then
this cycle is in the span of the first l elements of the right
filtration given by the matrix Zj

p−1. Furthermore, since the

matrix Hj
p is reduced with respect to Bj

p, the row l in Bj
p is

zero, by definition. Therefore, there does not exist a cycle
in the span of the first l − 1 elements of the right filtra-
tion that’s in the kernel of the homology map. Therefore,
our update is correct — it adds to the matrix Bj

p a column

with a 1 in row l, indicating that the updated cycle Zj+1
p−1

dies after the addition of simplex σi. (This analysis reflects
the Reduction Lemma in [6].) In summary, the operations
in Section 3 closely mimic the original zigzag persistent ho-
mology algorithm [6], and satisfy the additional Sequential
Invariant requirements.

B. PROOFS OF RUNNING TIME LEMMAS

Proof of Corollary 1. This is a special case for k = n (i.e.
root of the tree), with Zp, Cp, Bp, Hp and Kp “empty” (Zp,
Cp, Bp with zero columns, Hp, Kp with zero rows), with Fp

equal to a permutation matrix that maps addition order to
removal order, and Lp = FT

p−1DpFp.

Proof sketch of Lemma 3. Split matrices into k × k
blocks, and treat blocks as entries. Use a fast k × k matrix
multiplication algorithm to multiply blocks.

Proof sketch of Lemma 5. Let P,U, V , and Q,X, Y be
low-width representations of A and B, respectively. It is
easy to check that

PQ ,
[
U PX + U(V TX)

]
,

[
QTV Y

]
.

is a width-(k1 +k2) representation of AB. The running time
follows by applying Lemma 3 to the above expressions.

Proof sketch of Lemma 4. Let P,U, V be the width-k
representation of A. Then one can compute AB as PB +
U(V TB), using Lemma 3.

C. LEFT-TO-RIGHT IMPLEMENTATION
The following is one possible implementation of the

Left-to-Right computation, described in Section 4, ex-
pressed in pseudo-code.

Left-to-Right(v)
for i ∈ l do
Qi ← I , xi ← 0 , yi ← 0

for p = 0, 1, . . . , maximum dimension do
for i = a, . . . , c do
Pi, ui, vi ← width-1 form of M i;l

p

si ← pivot row of M i;l
p (if any)

P,U ′, V ′ ← Prefix(Pi, ui, vi | i = a, . . . , c)

Q,X ′, Y ′ ← Suffix(QT
i ,

QT
i xi

yT
i QT

i xi−1
, Qiyi | i = c, . . . , a)

T1 ← I , T2 ← Q
for i = a, . . . , c do
s′i ← T1si
s′′i ←

[
e1· · ·ei−a 0· · ·0

]T
(X ′)T (T2si)

T1 ← T1Qi , T2 ← T2Qi

T1 ← Y ′
[
s′′a · · · s′′c

][
s′′′a · · · s′′′c

]
←
[
s′a · · · s′c

]
+ T1

T1 ← Φa;v
p U ′ , T2 ← Γa;v

p U ′

T2 ←
[
s′′′a · · · s′′′c

]T
T2

for i ∈ l do
[αT

i | βT
i ]← 0 or sTi T1 or eTi−a+1T2

βT
i ← βT

i

[
e1· · ·ei−a 0· · ·0

][
wa· · ·wc

]
← −

[
βa· · ·βc

]
(
[
αa· · ·αc

]
− I)−1

for i = a, . . . , c do

Qi ←
[
Pi 0
0 I

]
xi ←

[
ui

0

]
, yi ←

[
vi
wi

]
M i;v

p ← Qi + xiy
T
i
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